Peirce quincuncial projection
ja: パース・クインカンシャル図法
en: Peirce quincuncial projection
https://upload.wikimedia.org/wikipedia/commons/6/6b/Peirce_quincuncial_projection_SW_20W.JPG
これによる正角図法が一番見やすいと思うwint.icon Proj4: +proj=peirce_q +shape=square +lon_0=225
225° = 15° × 15
独自調整してる。wint.icon
https://pbs.twimg.com/media/FYGWi2RacAAQzrb.jpg
デフォ設定だと オーストラリアとニュージーランドが分かれてしまう。
def.
$ \mathrm{sd}\left(\sqrt{2}\,w , \frac{1}{\sqrt{2}}\right) = \sqrt{2}\,r
where $ m = k^2 = 1/2
$ w = \frac{1}{\sqrt{2}}\,\mathrm{arcsd}\left(\sqrt{2}r , \frac{1}{\sqrt{2}}\right)
$ = \frac{1}{\sqrt{2}} \int_0^{\sqrt{2}r} \frac{\mathrm{d}t}{ \sqrt{ 1 - \frac{1}{4}t^4 } }
$ = \int_0^{r} \frac{\mathrm{d}t}{ \sqrt{ 1 - z^4 } }
where z ≔ t/√2
t = z √2
dt = dz √2
sd を使う。
$ \mathrm{arcsd}(x \mid k^2) = \int_0^x \frac{\mathrm{d}t}{ \sqrt{ (1 - (1-k^2) t^2)(1 + k^2 t^2) } } = \int_0^x \frac{\mathrm{d}t}{ \sqrt{ 1 - (1 - 2k^2 - (1 - k^2) k^2 t^2) t^2 } }
sl を使う。
cf. sd版
$ \sqrt{2}\;\mathrm{sl}(w) = \sqrt{2}\;r
sl: lemniscate sine
$ w = \mathrm{arcsl}(r) = \int_0^r \frac{dz}{ \sqrt{1 - z^4} }
$ = k\,F\left(\arcsin\left(\frac{r}{k\sqrt{1+r^2}}\right); k\right)
where
$ m = k^2 = 1/2, α = τ/12
F: incomplete elliptic integral of the first kind
in Jacobi's algebraic form
類似
Spilhaus projection
偶数次 Chebyshev 級数で第一種楕円積分を近似計算できるらしい。
algo
l = long, p = lat
in radian
sign of m, n
sm = if sin(l) < 0 then -1 else 1
≈ sign(sin(l))
= で良い
sn = if cos(l) > 0 then -1 else 1
≈ -sign(cos(l))
= で良い
angle a, b
a = arccos(cos(p) * (sin(l) + cos(l)))
= arccos(cos(p) * sin(l+pi/4))
b = arccos(cos(p) * (sin(l) - cos(l)))
= arccos(cos(p) * -sin(pi/4-l))
= arccos(cos(p) * -cos(l+pi/4))
assert cos(a+b) ≤ 0, cos(a-b) ≥ 0
clamp sqrt to domain of arcsin = ±1
angle m, n as amplitude
m = arcsin(sqrt(1 + min(0,cos(a+b))))
= arcsin(sqrt(1 + cos(a+b)))
誤差対応
n = arcsin(sqrt(abs(1 - max(0,cos(a-b)))))
= arcsin(sqrt(1 - cos(a-b)))
誤差対応
calc F by amplitude and parameter=1/2
x = F(sm * m, 1/2)
y = F(sn * n, 1/2)
shift 南半球 by K(1/2)
scale = K(.5)
bins: l in (-4, -3, -1, 1, 3, 4)/4*π
1. scale - y
2. -scale - x
rotate 45deg from diamond
(x,y) := 1/√2 (x-y, x+y)
ref.
incomplete elliptic integral of the first kind
binary
(complete) elliptic integral of the first kind
unary